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Abstract Low-Re turbulence models are used in the computation of convective heat transfer in
two-dimensional ribbed passages. The cases computed include ribbed annular channels, pipes and
plane channels. The models investigated cover both zonal models, that obtain the near-wall
dissipation rate from the wall distance, and full low-Re models. Effective viscosity modes and
simple (basic) second-moment closures are used. Zonal models display predictive weaknesses in the
rib-induced separation region, but return reasonable heat transfer levels. For the low-Re models
an alternative length-scale-correction term to the one proposed by Yap is developed, which is
ndependent of the wall distance. This wall-independent correction term is found to improve heat
transfer predictions, especially for the low-Re k- model. The low-Re models produce a more
realistic heat transfer variation in the separation region and reasonable Nussell number levels.
The differential second-moment closure (DSM) models improve heat transfer predictions after
re-attachment and over the rib surface. The effect of Reynolds number on the Nusselt number is
not, however, fully reproduced by the models tested.

1. Introduction

Heat-transfer-enhancing ribs are employed in blade and also in other cooling
applications. For blade cooling, such ribs are used along the surfaces of internal
passages within rotating blades. As intended, ribs cause flow separation and a
rise in turbulence and heat transfer levels. It is consequently important that
turbulence models employed in the computation of blade-cooling flows are able
to account for the effects of rib-roughness on turbulence.

The flow and thermal developments in blade-cooling passages are also
strongly influenced by the presence of U-bends of strong curvature and also by
the blade rotation. The computation of flow and heat transfer through curved
and rotating passages has been the focus of numerous investigations, both
within the authors’ group (Iacovides and Launder, 1995) and elsewhere
(Besserman and Tanrikut, 1991). As shown in earlier studies, the prediction of
the secondary motion generated by curvature requires the resolution of the
mean flow across the wall sub-layer, making the wall function approach

The authors wish to express their gratitude to Professor B.E. Launder for his support and
encouragement. Support for this work has been provided by Rolls-Royce plc and DRA
Pyestock. The helpful input of Mr J. Coupland, of Rolls-Royce plc is gratefully acknowledged.



inappropriate. In U-ducts of curvature strong enough to cause flow separation
and also in rotating ducts, use of low-Re second-moment closures further
improves predictions.

Most of the numerical studies of flow and heat transfer through ribbed
passages, such as Lee et al. (1988) and Liou et al. (1993), have so far employed
high-Re models of turbulence with the wall function approach. One exception is
the work of Taylor et al. (1991) on three-dimensional flows, but comparisons
with measurements were not very detailed. Since the other flow features
present in blade cooling passages, due to curvature and rotation, necessitate the
use of low-Re models of near-wall turbulence, more extensive testing of low-Re
models in ribbed passages is necessary, to establish which low-Re models can
reliably reproduce the effects of ribs as well as those of orthogonal rotation and
strong curvature. Hence in this study low-Re turbulence models are used in the
computation of flow and heat transfer through two-dimensional ribbed
passages. The main objective is to establish how reliably low-Re models,
already tested in computations of flow and heat transfer through curved and
rotating ducts, can reproduce the effects of rib roughness. The investigation
has included both full low-Re transport models and also zonal models, where
simpler near-wall models that obtain the dissipation rate from the wall distance
are matched to high-Re transport models in the fully turbulent region. In
addition to effective viscosity, second-moment closures are also employed.

2. Mean flow equations

All equations included in this and the subsequent section are presented in the
compact Cartesian tensor notation, for brevity. In this study, the two-
dimensional plane and axi-symmetric forms of these equations have been
solved. Moreover, because the data with which the present computations are
being compared have been obtained from experiments in which the variations
in fluid temperature were small, fluid properties are assumed to remain
constant:

+ Continuity:
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+ Enthalpy transport equation:

) 9 (poT
o (pUT) = o (ﬁa_x] - P%zf>~ 3)

Computation of
flow and heat
transfer

139




HFF
11,2

140

The terms %, and u;jt are known as the turbulent, or Reynolds, stresses
and turbulent heat fluxes respectively. They represent the effects of
turbulent mixing on the transport of momentum and thermal energy. In
order to solve the above system of the mean flow equations, additional
equations need to be introduced to provide the distribution of the
turbulent stresses and heat fluxes. While exact equations for these
variables can be derived, these are impossible to solve because they
include further unknown variables. Approximate equations for #;u; and
u;t are introduced instead, known as turbulence modelling equations.
These are presented in the next section.

3. Turbulent flow equations

3.1 Effective viscosity models

In both EVM versions employed here, the Reynolds stresses and the turbulent
heat fluxes are obtained from the effective viscosity and effective diffusivity
approximations, respectively, shown in equations (4) and (5) below:

2 ou;  oU;
p Uity = §k5zj = < ox; + 6xj> (4)
2 moT
it = or 8)61' ' (5)

This is a widely used approach, popular for its numerical robustness, but which
produces isotropic turbulence fields, with the turbulence energy distributed
equally in all directions (u? = 3 = u3 = k). Turbulence is however anisotropic
and in many flows, such as flows with streamline curvature, the mean flow
development is sensitive to the anisotropy of turbulence.

Zonal k-e/one-equation model. As the above name suggests, in the fully-
turbulent region the standard high-Re version of the k- model is used, while in
the near-wall regions a low-Re version of a one-equation model of k-transport is
employed. This approach allows the resolution of the mean flow across the
viscous wall sub-layer, without the need to use an excessively fine near-wall
grid.

In the high-Re k- the turbulent viscosity that appears in equations (4) and
(5) 1s obtained from the turbulent kinetic energy, k, and its dissipation rate, ,
according to equation (6):

e = pe, /e (6)

Two additional transport equations are used to determine the distributions of k
and ¢, equations (7) and (9) respectively:
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The term Py in the k-transport equation (7) represents the generation rate of
turbulence and it is obtained through the exact expression given by equation (8).

approximate the transport of k and ¢ respectively

through turbulent mixing, while the last two terms of the ¢ transport equation
(9) approximate the generation and destruction rates of the dissipation rate.

In the near-wall regions equation (7) is still used to obtain the distribution of
k, but the dissipation rate, ¢, and the turbulent viscosity, u, are obtained from
algebraic expressions (10) and (11), proposed by Woolfshtein (1969), that rely
on prescribed length scales /. and /,,:

3/2
€= kgﬂ (10)
and
e = pcﬂﬁu\/i_e. (11)

The length scales ¢. and ¢, are obtained from the near-wall distance Y,
according to:

0. =255 Y[1 — exp(—0.263 y*)) (12)

¢, =2.55Y[1 —exp(—0.016 y")], (13)
where y* = Yk"?/v is the dimensionless wall distance and is used to introduce
the damping effect of the wall on turbulence.

Low-Re k- model (Launder and Sharma, 1974). This is an extension of the
high-Re k-¢ that can reproduce the wall damping of turbulence and hence can
be used across the viscous sub-layer. The expression for the turbulent
viscosity, (14), now includes the damping function f,,, given by equation (15), in
which the damping parameter, R;, is the local Reynolds number of turbulence,
defined as R, = k)?/(ve):

e = peufu K /e (14)

f, = exp[—3.4/(1 + 0.02R,)?. (15)
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The last term in the k-transport equation, (16), the only difference between the
high- and low-Re versions of this equation, ensures that at the wall the
dissipation of turbulence remains finite. The main difference between the high-
Re and low Re versions of the e equation, equations (9) and (17) respectively, is
the last term in equation (17) which represents the direct effects of viscosity on
the larger, energy-containing turbulent eddies:

d B ok oVk
52 (U = 5 Km%) ax] P —pa—2pu<8x]> (16)
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(17)

The damping function f, for the generation rate of ¢ is determined with respect
to decaying, grid-generated turbulence:

fy =1—0.3 exp(—R?). (18)

3.2 Low-Re DSM models
DSM closures are introduced so that the effects of the anisotropy of turbulence
can be taken into account. The DSM closures employed here are rather simple
and empirically devised low-Re extensions of the more widely used basic DSM
model, which relies on the linear redistribution terms and uses the wall
reflection terms. They have evolved from the low-Re ASM closures proposed
by Iacovides and Launder (1992) and subsequently extended by Iacovides and
Toumpanakis (1993) to low-Re DSM closures. These models were initially
applied to the computation of turbulent flows through rotating cavities and
recently, by Nikas (2000), to the computation of flow and heat transfer through
stationary and rotating U-bends. The low-Re terms, constants and damping
functions have been determined with reference to fully-developed pipe flow and
have not been changed in any of the subsequent applications.

Instead of the effective viscosity approximation, equation (4), the turbulent
stresses are now obtained through the solution of separate transport equations,
represented by equation (19):

0 0 e\ Ouiit;
o (pUptitt;) = MKAWU—]) axk]

1
+Pj — pej+pij — [I'Izingk‘Sij] +Jj-

(19)

As in the k and ¢ transport equations, the transport of the turbulent stresses
due to turbulent mixing is modelled through the effective diffusivity concept.



The term P; denotes the generation rate of the turbulent stresses and is
obtained through the exact expression given in equation (20). The term ej
denotes the dissipation rate of the turbulent stresses which, as shown in
equation (21), is assumed to be isotropic when the flow is fully turbulent and
proportional to the ratio %;u;/k at the wall. The function £ is zero when the flow
1s fully turbulent and one at the wall.

oy; oU;
P; = —(pu,uk s !+ puuy, o k> (20)
2 ulu
e =5 (1~ f)eb + [ = (21)

The term ¢j;, given in equation (22), represents the redistribution of turbulent
energy among the different components of the Reynolds stress tensor due to
fluctuations in the pressure and strain fields. The first two terms denote a
linear return to isotropy and isotropisation of production respectively. They are
also present in the widely used high-Re version of the DSM closure. Terms
"1 and i, given in equations (23)-(25), are the conventional wall reflection
terms, proposed by Gibson and Launder (1978), to model the “wall-echo” part of
the pressure strain correlation, which, near solid surfaces, removes kinetic
energy from the fluctuating component normal to the wall and redistributes in
the other two directions. They have been devised for the fully turbulent region
of a flow over a plane wall and make use of the wall distance x,, and the unit
vector normal to the wall n.

ef{___ 2 1
Py = —Clp% (Mi“j - §k5i1> — (2 <Pij = EPkéij> +fw(<PZ‘}1 + 80172) (22)

€ 3 3 kLS
Pi1=c1py, <uk”mnknm6ij = o Uty — é”k”j”k”l‘) { } (23)

ECXy
5 3 3 k1.5
Piz = ¢z ((Pkmznknm@] 5 ik = 5 %‘kzﬂk%i> {wxn }, (24)
where
2

Within the viscous sub-layer the wall reflection terms are damped through the
function f,,. Their task within the viscous sub-layer is then performed by
(H;; — Hik 6/3), where Hj; is given by equation (26). The contribution of this
term is more extensively discussed in Bo et al. (1995). It represents a relatively
simple way of achieving approximately the correct distribution of the Reynolds

Computation of
flow and heat
transfer

143




HFF
11,2

144

stresses across the viscosity-affected sub-layer, by taking energy from the
fluctuating component normal to a wall and redistributing it equally in the
other two directions.

(26)

Hj :fH% (P Uity OVEOVE _8@%)

3365 89@- pute 3365 8xl-

The term Jj;, given in equation (27), increases the sensitivity of the model to the
effects of low mean flow Reynolds number.

Ji =f/pk<an an)

ax]- + 6xl-

(27)

The turbulent heat fluxes are obtained through the generalised gradient
diffusion hypothesis, given by equation (28).

ut = —pc ku-u-aT
it = —p TE z]axj'

(28)

Simplified (zonal) DSM closure. In the fully turbulent region, ¢ is obtained from
the same equation used in the high-Re k-¢ model. In the near-wall region, ¢ is
obtained from the wall distance, as in the Woolfshtein model (1969), but with:

0. = 2.55 Y[1 — exp(—0.236 yx)]. (29)

The damping functions that appear in equations (21)-(27) depend on the
dimensionless wall distance y* and have the following expressions:

fe = exp(—y73) (30)

fy = [1 — exp(—0.12y*)][1 + exp(—0.03y*)] (31)
f; = 0.06 exp(—y?/3) (32)

fir = (10.2 + 7.5v*) exp(—y"/20). (33)

Low-Re DSM closure. The dissipation rate equation is the same as equation (17)
of the Low-Re k-¢ model. The damping functions that appear in equations
(21)-(27) now depend on the turbulent Reynolds number, R;, and have the
following expressions:

. = exp(—R,/8) (34)
£ = [1 - exp(~Ry/20)][1 — exp(~Re/100)] (35)

fj = 0.06exp(—R;/8) (36)



fir = (10 + 2.6R) exp(—R;/20) (37)

Also £, since f still appears in the stress (19) and € (17) transport equations, is
now obtained from:

f. = exp[ — 4/(1 4 0.01R,)?. (38)

As mentioned earlier, the damping functions shown in equations (30)-(38), have
been devised with reference to fully-developed pipe flows and not specifically
for the ribbed passage flows presented in this study.

Length scale correction terms

It is well known, that in separated flows, the Launder-Sharma version of the
equation returns excessively high levels of near-wall turbulence. To address
this problem, Yap (1987) proposed the addition of a correction term, YC, to the ¢
equation, equation (17), based on the wall distance, Y:

&2 (15 )e k1~5/52
083% (2.551/ a 1) (2.551/ O (39)

In a recent proposal by Hanjalic (1996), the wall distance in the above term is
eliminated by using the gradient of the length scale normal to the wall surface.
Here, these ideas are further developed, by introducing the resultant of the
length scale gradient vector, and by also taking into account the effects of wall
damping across the sub-layer.

From Woolfshtein:

0. =255Y[1 — exp(—0.263y")]. (40)

YC = max

Differentiating ¢. and then replacing y* by R;, as proposed by Yap (1987),
produces the following expression for the gradient of the equilibrium length
scale, (d4./dY):

(dle/dY) = c/[1 — exp(—B:R¢)] + B.c/ Ry exp(—B.Ry), (41)
with ¢, = 2.55 and B, = 0.1069.

From the resultant gradient, D¢, of turbulent length scale ¢ = k¥?/e, a
correction factor F is defined according to:

D¢ = {(d¢/dx;)(de/dx;) }? (42)

and
F = [(D( — (dfe/dY)]/ci. (43)

A new version of the Yap term can then be developed, NYC of the form:
NYC = max|[0.83F (F + 1)% p?/k, 0]. (44)
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Table 1.
Turbulence modelling
constants

The modelling constants that appear in the preceding equations have the
values given in Table I

4. Numerical aspects

A finite volume solver has been employed, which solves the flow equations in a
fixed, Cartesian and axisymmetric co-ordinate system. A semi-staggered grid
arrangement is employed, in which the velocity nodes are located at the corners
of the scalar control volumes, and, in the second-moment computations, the
nodes of all the turbulent stresses are located at the scalar node locations. The
cases examined involved passages that are long enough for repeating flow
conditions to prevail over each rib interval. Consequently, the numerical flow
domain covers only one rib interval, and repeating flow and thermal boundary
conditions are applied. A Cartesian mesh is employed, with the grid nodes
falling within the ribs blocked off.

Three mesh sizes have been tested, one consisting of 51 x 60 nodes, a finer
91 x 110 mesh and, for the ribbed channel case, an even finer 111 x 130 mesh.
In some of the cases examined there were some differences in the Nusselt
number levels predicted using the 51 x 60 and the 91 x 110 meshes, but the
introduction of the 111 x 130 mesh did not produce any further differences in
the predicted Nusselt number. All the results presented here have been
obtained using the 91 x 110 mesh, in which 37 grid nodes are used to resolve
each side of the rib. In the zonal models, the first 15 grid nodes are within the
fixed-length-scale region. The y* value for the near-wall node is of the order of
1, while at the interface between the near-wall and the fully-turbulent regions
the y* value is around 100. More details can be found in Raisee (1999).

5. Cases examined
As shown in Figure 1, three types of passage have been examined: an annular
passage with a ribbed inner wall, a ribbed pipe, and a plane channel with ribs

W W
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Figure 1.
Flow geometries
examined
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only along one wall. Five cases have been computed in total, with the details
presented in Table II. As shown in Figure 1, e denotes the rib height, P the rib
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spacing, D the pipe diameter and H the channel height. For the annular passage transfer
the ratio between the inner and outer radii, R/Ry = 0.392.
6. Presentation and discussion of results
6.1 Ribbed annular passage 147
Comparisons between measured and computed mean velocity profiles, for the
two annular cases, are presented in Figure 2. The measurements show that the
velocity maximum is close to the smooth, outer wall. Near the inner, ribbed
wall, there is a sharp drop in velocity, especially when the ribs are closer
(P/e = 10.8), implying that closer to the wall, where data are not available, a
E/RO-RI)
Passage or /D
geometry Ple or e/H Re Exp. data Comparisons
Annular passage 20 0.05 30 x 10°  Lee et al (1983) Vel. profile
Annular passage 10.8 0.05 30 x 10° Lee et al. (1988) Vel. profile
Ribbed pipe 10 0.0675 24 x 10° Baughn and Roby (1992) Local Nu Table II.
Ribbed pipe 10 0.0675 64 x 103‘ Baughn and Roby (1992) Local Nu Details of cases
Ribbed channel 10 0.1 122 x 10° Purchase (1991) Local Nu computed
Inner wall
1.0 1.0 + } +
1 I
|
I
E |
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g |
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Figure 3.

Local Nusselt number
comparisons for flow
through the ribbed pipe
at Re = 24 x 10°

separation bubble is present. The main features are well reproduced by the
computations, but a more gradual reduction in velocity is returned at the ribbed
wall, especially by the effective viscosity models. The DSM profiles, for
P/e = 10.8, show a larger separation bubble than their EVM counterparts,
which is more consistent with the data. The different approaches to near-wall
modelling do not appear to influence the mean flow predictions.

6.2 Ribbed pipe

For the ribbed pipe flows, local Nusselt number comparisons are shown in
Figures 3 and 4, for Reynolds numbers of 24 x 10° and 64 x 10° respectively.
Both zonal models (k-¢/1-eqn and simplified DSM), though not in complete
accord with the measurements, nevertheless produce reasonable Nu levels at
the two Reynolds numbers (Figures 3(a) and 4(a)). Immediately downstream of
the rib, where the flow has separated, the zonal EVM predicts that the peak
Nusselt number occurs too close to the rib, in comparison with the data, while
the zonal DSV, again in comparison to the data, predicts the rise to be too slow.
These predictive differences are consistent with the fact that, as shown in
Figure 2, the DSM models return a larger separation bubble. Both models
under-predict the maximum Nu level associated with flow re-attachment. This
is not unexpected, since in separated flows the assumption that the turbulent
length scale is proportional to the wall distance breaks down. After
re-attachment, the thermal predictions of both zonal models and especially the
DSM are in good agreement with the data. Over the rib itself, the Nusselt
number levels are well predicted by the k-¢/1-eqn model, while with the
simplified DSM they are under-predicted, especially at the higher Reynolds
number. On the whole, the two simpler, zonal models produce thermal
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predictions that in the ribbed pipe investigated are surprisingly close to the
experimental data. The fact that at the higher Reynolds number the differences
between the predicted and measured levels is greater suggests that the
Reynolds number effect on the Nusselt number is not fully reproduced by the
zonal approach to the modelling of near-wall turbulence.

The low-Re k- predictions, shown in Figures 3(b) and 4(b), reveal that
abandoning the near-wall length scale approximation considerably improves
the predicted thermal behaviour in the separation region, returning the correct
recovery from the rib corner. While with the old Yap term the Nu levels are
noticeably over-predicted, introduction of the new Yap term leads to more
satisfactory Nusselt number computations along the pipe wall. At the higher
Reynolds number, Nu levels over the rib are however over-predicted.
Computations without any Yap term have not been included because they
produced Nu levels substantially higher than those measured.

For the low-Re DSM, Figures 3(c) and 4(c) show that, as also noted in the
zonal DSM comparisons, a more gradual rise in Nu levels downstream of the
rib is produced, which for the ribbed-pipe-flows is in contrast to the measured
behaviour. With the old Yap term, Nusselt number levels over the downstream
half of the rib interval, after re-attachment, are over predicted. The new Yap
term again lowers the predicted Nu levels, leading to very close agreement with
the experimental data over the downstream half of the rib interval. Nusselt
number levels are, however, severely under predicted, over the upstream half of
the rib interval, within the separation region. The low-Re DSM computations
are somewhat closer to the data than the corresponding zonal computations,
but not as close as the low-Re EVM predictions. For both low-Re models, but
especially the EVM, introduction of the new Yap term, which is independent of
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Figure 4.

Local Nusselt number
comparisons for flow
through the ribbed pipe
at Re = 64 x 10°
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Figure 5.
Predicted mean flow in
the ribbed channel

Figure 6.

Near-wall profiles of
turbulent kinetic energy,
for flow through the
ribbed channel

the wall distance, leads to improvements in the heat transfer predictions. Our
examination of the predicted flow fields at Re = 24,000 was not sufficiently
detailed to allow us to identify why the low-Re DSM predictions display the
rather unrealistic sharp changes in the profiles of the local Nusselt number at
x/P of 0.33, where the local Nu reaches its maximum level.

6.3 Ribbed channel

For the plane ribbed channel, the computed flow field and near-wall
distribution of the turbulence energy are presented in Figures 5 and 6,
respectively. The separation bubble downstream of each rib now extends over
almost half the rib interval. A smaller separation bubble is formed ahead of
each rib. The predicted k levels are considerably higher than those found in
smooth passages, but are consistent with those observed in recent experimental
studies (Iacovides et al,, 1996). Within the separation bubble, the new Yap term
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returns somewhat lower turbulence levels than the old version; a feature
consistent with the heat transfer comparisons.

Local Nusselt number comparisons for the plane ribbed channel are shown
in Figure 7. The measurements indicate that the Nusselt number now rises
more gradually downstream of the rib, reaching the maximum level at around
the half-way point of the interval. This behaviour is markedly different from
that observed in the ribbed pipe. One possible explanation for this difference in
the Nusselt number distribution is that the rib-size for this case is larger than
for the ribbed pipe. Data for three-dimensional flows through ribbed ducts
(Baughn and Yan, 1992), however, suggest that another probable cause for this
difference in behaviour is the fact that now a plane ribbed surface is examined,
while in the previous case the ribbed surface was axi-symmetric.

The k-¢/1-eqn model of Figure 7(a) produces a more gradual rise in Nu than
for the ribbed pipe at Re = 64 x 10° of Figure 4(a), but still, in comparison with
the experimental data, predicts the location of peak Nu too close to the rib. As
also observed earlier, over most of the rib interval, heat transfer levels are
under-predicted by the zonal EVM model. Along the top surface of the rib, this
model returns the correct variation of the Nusselt number, but over-predicts the
level. The zonal DSV, on the other hand, while still under-estimating heat
transfer levels, nevertheless produces the correct variation over the rib interval.
Along the top surface of the rib, the peak Nu level is predicted to occur too close
to the downstream corner of the rib, but the levels are closer to those measured.
On the whole, the predictions of the zonal DSM are closer to the measurements
than those of the zonal EVM.

As also noted in the ribbed pipe comparisons, replacing the zonal EVM by
the low-Re k-¢, Figure 7(b), results in a more gradual increase in the Nusselt
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Figure 7.

Local Nusselt number
comparisons for flow
through the ribbed plane
channel
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Figure 8.

Predicted flow fields
over rib, for flow
through ribbed channel

number downstream of the rib and also in higher Nu levels. The predicted Nu
levels are now higher than the measured values and the peak Nu in the rib
interval is still predicted to be closer to the upstream rib than the measured
peak. The new Yap term leads to lower Nu levels, thus improving thermal
predictions. The computed levels, however, still remain higher than those
measured, especially over the rib.

The low-Re DSM, Figure 7(c), like its zonal counterpart, returns a gradual
rise in Nusselt number downstream of the rib, which is consistent with the
experimental behaviour. With the old Yap term, the DSM model overestimates
somewhat heat transfer levels over part of the rib interval and even more so
over the rib surface. With the new Yap term, wall heat transfer over the rib
interval is somewhat under-predicted, while over the rib surface its computed
level is closer to the measurements than that of the Low-Re EVM. In common
with the zonal DSM, however, over the rib surface the two low-Re DSM
closures predict that the peak Nu level occurs over the downstream half of the
rib. This is in contrast to the measured variation and also to that predicted by
the effective-viscosity models. Close-up plots of the predicted flow field over the
rib, shown in Figure 8, reveal that the EVM closures predict that only a small
separation bubble is formed at the upstream corner of each rib, followed
by re-attachment, while the DSM closures return a longer separation bubble,
with re-attachment over the downstream half of the rib surface. This explains
the differences in the predicted variations in local Nusselt number over the rib
surface. On the whole, the new Yap term improves the DSM predictions. The
most serious discrepancy occurs in the upstream corner, where heat transfer
levels are seriously underestimated. This feature is also present, though not as
strong, in the DSM computations for the ribbed pipe. It thus appears that the
DSM models employed here over-damp turbulence in corner regions. A
probable cause of this over-damping of turbulence could be the use of the wall
reflection terms, goijw, and the other damping term Hy;, both of which have been
developed with reference to the damping effects of a single wall. In corner
regions, these terms may thus lead to excessive damping of turbulence. The
fact that this feature is stronger in the ribbed channel case may be due to the
fact that in this case the rib size is greater.

Vo
vt HI

e

(a) Low-Re k-¢ (b) Low-Re DSM



In general, heat transfer predictions for the ribbed channel are not as close to
the data as the corresponding predictions for the ribbed pipe, especially over
the rib surface. In addition to the difference in the passage geometry, the rib is
larger and the flow Reynolds number is considerably higher than those in the
ribbed pipe computations. The grid refinement tests have shown that
numerical errors cannot account for the observed predictive deficiencies. One
possible explanation is that the turbulence models employed find it more
difficult to cope with the effects of the larger separation bubble, caused by the
larger rib. A second explanation, for which the two sets of computations for the
ribbed pipe provide some support, is that the models employed do not fully
reproduce the Reynolds number effect on heat transfer. The ribbed pipe
comparisons of Figures 3 and 4 show that differences between the Nusselt
number computations produced by the zonal and the low-Re DSM models and
the experimental data are greater at the higher of the two Reynolds numbers
examined. Moreover, this Reynolds-number-related trend in predictive
deficiencies observed in the ribbed pipe comparisons is consistent with the
somewhat greater predictive deficiencies identified in the comparisons between
the computed Nusselt number distributions of the zonal and low-Re DSM
models and the experimental data for the ribbed channel. Finally, a parallel
study within the author’s group (Craft et al, 1999), looking at heat transfer
predictions in an abrupt pipe expansion, has also reached a similar conclusion
regarding the ability of turbulence models to reproduce the Reynolds number
effect on Nusselt number in recirculating flows.

7. Concluding remarks

From the comparisons presented, a number of conclusions may be drawn on
the use of low-Re models flow and heat transfer computations in two-
dimensional ribbed passages.

Zonal models that obtain the near-wall dissipation rate from the wall
distance have performed better than expected, returning reasonable, though
lower than the measured, overall heat transfer levels. Their main weakness is
in the prediction of wall heat transfer in the separation bubble, downstream of
the rib. Nevertheless, in plane ribbed channels, the thermal development over
the entire passage is closely mimicked by the zonal DSM.

The low-Re computations reveal that even with the Yap term, both models
tested, and the EVM in particular, overestimate Nusselt number levels. An
alternative correction term is proposed, which is independent of the wall
distance, though based on the same empirical arguments as the Yap term. This
new term improves the thermal predictions of both low-Re models tested.
Neither of the two low-Re models, however, returns thermal predictions that are
in complete agreement with the measurements. In ribbed pipes the thermal
behaviour is well reproduced by the low-Re EVM. The low-Re DSM produces
the correct behaviour after re-attachment, but not a fast enough recovery
downstream of the rib. For ribbed plane channels, the variation in local Nusselt
number is more faithfully reproduced by the low-Re DSM model, though the
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level is under-predicted. The low-Re EVM returns a faster Nusselt number
recovery downstream of the rib and substantially over-predicts its level over
the rib.

The comparisons show that while for the passage geometry closer to that of
a blade cooling passage, namely the plane ribbed channel, the DSM models
(zonal and low-Re) produce realistic simulations of the thermal behaviour, the
rather simple DSM versions tested here do not always return the correct
thermal behaviour in the rib-induced separation regions. Thus, even though the
heat transfer predictions are for the most part acceptable, more effective
closures need to be developed.

Another deficiency of the turbulence models tested appears to be their
nability to fully reproduce the Reynolds number effect on the Nusselt number
in ribbed passages. This suggests that numerical studies aiming to assess and
develop turbulence models suitable for heat transfer predictions through ribbed
passages should carry out comparisons over a wide range of Reynolds
numbers.
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